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Abstract. Using hydrodynamic model of semiconductor plasmas and coupled-mode theory of interacting
waves, we have analytically investigated parametric interaction in a magnetised piezoelectric semiconductor
plasma in non-relativistic domain. The temperature dependence of momentum transfer collision frequency
of electrons due to their heating by the pump is assumed to induce nonlinearity in the medium. We
have derived a dispersion relation which finally gives four unstable acoustic modes; two forward amplifying
modes and two backscattered attenuating modes. We have also obtained an expression for the critical pump
amplitude (Ecr) at and around which gains and phase velocities of amplifying acoustic modes become least
dependent on the pump amplitude E0 and static magnetic field Bs. The required Ecr can be readily
obtained from a pulsed 10.6 µm CO2 laser. The magnetic field is found to shift the critical point towards
lower pump amplitudes.

PACS. 72.30.+q High-frequency effects; plasma effects – 52.35.Mw Nonlinear phenomena: waves, wave
propagation, and other interactions (including parametric effects, mode coupling, ponderomotive effects,
etc.) – 72.55.+s Magnetoacoustic effects

1 Introduction

After the advent of laser, parametric interaction (PI) has
emerged as one of the most significant sub-field of non-
linear optics. It is an important mechanism of nonlinear
mode conversion from electromagnetic to electrostatic and
from high to low frequency waves and vice versa. It is also
one of the key processes to generate coherent radiation at
new wavelengths, in the range from extreme ultraviolet to
millimeter, not available from direct sources.

Presently, a large number of workers have con-
fined their attention to the parametric processes with
Ti:sapphire (Ti:Al2O3) which has broadened the range of
tunability in the infrared region (0.7–1.06 µm) and thus
replacing the widely used conventional dye and colour-
centre lasers [1]. Tunable coherent radiation has long been
used for biomedical instrumentation, study of energy spec-
trum of matter and optical data storage. Recently, it has
attracted renewed interest in connection with variety of
applications in combustion diagnostics, process control,
remote sensing and environmental monitoring. Picosecond
and femtosecond pulses of tunable radiation can be used
in time-resolved studies of chemical reactions and carrier
dynamics in semiconductors.
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Although PI of waves has been extensively studied
in the last four decades, there are tremendous possibili-
ties of further exploration and exploitation. The current
trends in the field indicate that this old but fascinating
phenomenon is still hotly pursued by both theoreticians
and experimentalists and increasing number of interesting
applications exploiting PI are being discovered or yet to
be discovered [1,2].

The parametric excitation of low frequency waves in
semiconductor plasmas has been widely prevailing phe-
nomenon and thus got attention of large number of work-
ers [3–8]. Maheshwari and Tarey [3] first time predicted
the resonant excitation of helicon waves in solid state
plasma using fluid model. Neogi and Ghosh [4] analysed
the problem of parametric amplification of acousto-helicon
wave in magnetised piezoelectric semiconductor (PES) by
assuming that the origin of the nonlinear interaction lies in
second-order optical susceptibility arising due to induced
nonlinear current density. Mamun and Salimullah [5] the-
oretically investigated the parametric excitation of Alfven
and helicon waves in semiconductors. Parametric exci-
tation of hypersonic wave in cubic PES with strain-
dependent dielectric constant was reported by Artemenko
and Sevruk [6]. Anwar et al. [7] predicted threshold pump
field for the onset of absolute instability of upper-hybrid
acoustic wave. Very recently, Sharma and Ghosh [8] have
reported an analytical study of frequency modulational
interaction between copropagating high frequency pump
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and acoustic wave (AW) and consequent amplification of
the modulated waves in a PES plasma. In all the earlier
studies, carrier heating by the pump has normally been
neglected. However, it is a fact that the propagation of
an intense pump through a medium causes heating of the
carriers. As a result, these carriers acquire a temperature
above that of the lattice. This carrier heating invariably
modifies momentum transfer collision frequency (MTCF)
of the carriers which is expected to have striking effects
on the propagation and amplification characteristics of the
interacting modes. The necessary use of high power laser
to observe and study higher order nonlinear phenomena
has further led to realise that the heating of carriers by
such an intense laser are too significant to be ignored,
and thus started drawing considerable attention [9,10].
Lee and Cho [9] recently studied the role of thermal cou-
pling of electrostatic waves during PI in the medium. More
recently, Wang Jinsong et al. [10] investigated the stimu-
lated Brillouin scattering initiated by thermally excited
AWs in absorptive media by using distributed fluctuating
source model.

Motivated by the renewed interest in the field due
to availability of increasingly high power lasers and sub-
sequent necessity to incorporate heating effects in the
analysis, in the present paper, we have presented an ana-
lytical investigation of convective amplification of para-
metrically generated AW in a magnetised n-type PES
plasma at 77 K. We have employed the well-known hy-
drodynamic model of one-component semiconductor plas-
mas [11,15] and coupled-mode theory which is a simple,
very instructive and widely used theoretical approach to
study PI in semiconductors. There are several excellent
reports available in literature based on this model [4,5,8,
12–15]. The heating of carriers by the pump modifies their
MTCF and induces nonlinearity in the medium. As far
our knowledge goes, no systematic attempt has yet been
made towards such an investigation. The basic equations
describing the phenomenon are presented in Section 2.
This section also deals with complete theoretical formula-
tion of dispersion relation for the generated AW. Finally,
an exhaustive numerical analysis performed for a doped
n-InSb duly irradiated by a pulsed 10.6 µm CO2 laser
followed by a detailed discussion is given in Section 3.

2 Theoretical formulation

This section deals with the theoretical formulation of the
dispersion relation. We have considered the hydrodynamic
model (ka` � 1; ka being wave number of the AW and `
being the electron mean free path) of a homogeneous one-
component semiconductor plasma of infinite extent. The
medium is considered to be an n-type III-V PES immersed
in a static magnetic field Bs pointing along z-axis. This
medium is irradiated by an intense pump expressed using
plane wave approximation as

E = x̂E0 exp[i(k0x− ω0t)]. (1)

In solids, there are basically two different kinds of plas-
mas which may be distinguished by their physical prop-

erties. One of these is known as immobile plasma; it con-
tains one sign of charge which is fixed to the lattice posi-
tion, the other charge particle being free to move through
out the solid. This plasma is also called one-component
plasma because only one of the component is free to move.
For example, the electrons in metals, the electrons (or
holes) in extrinsic semiconductors or those in a doped
semimetals. The other kind of plasma is known as mo-
bile plasma because it possesses carriers of both signs
which are free to move in the crystal. In heavily doped
n-type III-V compounds, the hole concentration is much
smaller than the electron concentration. In addition to
this, in these semiconductors the effective mass of holes is
usually much larger than that of the electrons. Hence the
material can be represented with reasonable accuracy as a
single-component free-electron plasma in the back ground
of positively charged ions fixed to the lattice points [16].
Here the use of hydrodynamic model enables us to con-
sider the charge carriers in the plasma as a certain con-
tinuous medium, a conducting liquid placed in the crys-
talline lattice. In this model, it is assumed that although
the values of the plasma particle velocities can be most
diversed, a certain particle velocity distribution is estab-
lished within the limits of some macroscopic element of
the liquid (called a liquid particle), which corresponds to
a definite average velocity. In order to obtain the electric
currents and the fluxes of matter in the plasma, the equa-
tion of motion of liquid particles is used. If there is only
one kind of mobile particles in the plasma, the equation of
motion of carriers and other dynamical equations in the
hydrodynamic approximation governing the PI are

∂2u

∂t2
+
β

ρ

∂Ea

∂x
=
c

ρ

∂2u

∂x2
, (2)

∂v0

∂t
+ v0 ·

∂v0

∂x
+ νv0 =

e

m
[E + v0 ×Bs], (3)

∂v1

∂t
+ v0 ·

∂v1

∂x
+ v1 ·

∂v0

∂t
+ νv1 =

e

m
[E1 + v1 ×Bs].

(4)

Physically, the interaction of intense pump with the crys-
tal generates a transverse acoustic mode (Eq. (2)) in
the PES. In this equation, u(x, t) = u exp[i(kax − ωat)]
denotes displacement of lattice points from their mean po-
sitions, β is the piezoelectric constant, ρ is material den-
sity, c is the elastic constant and Ea is the total space-
charge field. These acoustic modes in turn produce a
localised density perturbations and the consequent refrac-
tive index variations and thus presents an acoustic grat-
ing for the incident pump. This acoustic grating diffracts
the incident pump and generates additional fields in the
medium. The diffracted beam contains side-band waves
(SBW) E1 exp[i(k1x − ω1t)], where k1 = ka ± k0 and
ω1 = ωa ± ω0. The + and − signs correspond to anti-
stokes and stokes modes, respectively. Here we have ne-
glected higher-order non-resonant terms (k1 = ka ± pk0

and ω1 = ωa ± pω0, p ≥ 2) by assuming a long inter-
action path for the interacting waves [17]. In our model,
the approximation ka`� 1 means that the time in which
the AW travels one wavelength, each electron undergoes
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many collisions. Thus the average thermal velocity of elec-
trons may be neglected safely. The electron is therefore,
assumed to possess only zeroth and first order average
drift velocities v0 and v1 under the influence of E0 and
Bs (Eq. (3)) and E1 and B1, (Eq. (4)), respectively. Here
the parameters ν and m are the modified MTCF of the
electrons due to heating by the pump and the electron
effective mass, respectively. The external static magnetic
field Bs is assumed to be so strong that the medium be-
comes a magnetoplasma (ωp ∼ ωc ∼ ω0) and thus allows
us to safely neglect the influence of the pump magnetic
field.

The electron density perturbations at side-band fre-
quencies couple nonlinearly with the pump to amplify the
AW. Under the phase matched conditions (k1 = ka ± k0

and ω1 = ωa ± ω0 also known as conservation of momen-
tum and energy, respectively), the AW and SBW both get
amplified at the expense of the pump. The electric fields
due to charge separation associated with electron density
perturbations and the transverse AW give rise to a space-
charge field, which may be determined from the respective
continuity and Poisson equations:

∂n1

∂t
+ n0

∂v1

∂x
+ n1

∂v0

∂x
+ v0

∂n1

∂x
= 0, (5)

∂Ea

∂x
+
β

ε

∂2u

∂x2
=
n1e

ε
· (6)

Here n0 and n1 are the unperturbed and perturbed elec-
tron densities, respectively.

2.1 Heating of electrons and modified MTCF

The intense pump when passes through high mobility
semiconductor, ions remain passive because of their large
inertia while due to low effective masses, electron inter-
act with the pump and gain energy. As a result, electrons
attain a temperature somewhat higher than that of the
lattice. In steady-state, the electron temperature Te can
be readily estimated from energy balance equation in the
following manner.

The power absorbed per electron from the pump is

−e
2

Re(v0 ·E∗0) = −e
2ν

2m
(ω2

0 + ω2
c )

[(ω2
0 − ω2

c )2 + 4ν2ω2
0]
E0E

∗
0 , (7)

where ∗ denotes the complex-conjugate while Re de-
notes the real part of the quantities concerned. The
x-component of v0 used in the above equation, may be
evaluated from equation (3).

The lattice temperature is assumed to be maintained
at liquid nitrogen temperature (77 K). Apel et al. [18]
have concluded after a series of cyclotron resonance exper-
iments that at this temperature phonon scattering dom-
inates over all other scattering mechanisms viz. due to
ionised impurities, crystal defects etc. in n-InSb. More-
over, in centrosymmetric crystals, the nonpolar phonon
scattering is also negligibly small. Thus on account of
heavy masses of the acoustic phonons (AP) and relatively

larger energies of polar-optical phonons (POP), the dom-
inant scattering mechanisms for the transfers of momen-
tum and energy of carriers may be assumed due to the
collisions with AP and POP, respectively [19,20]. Follow-
ing Conwell [21], the power dissipated per electron in col-
lisions with POP may be expressed as

p =
(

2kBθD

mπ

)1/2

eEpox
1/2
e K0(xe/2)

× exp(xe/2)
exp(x0 − xe)− 1

(expx0 − 1)
, (8)

where x0,e = (~ω`/kBT0,e) in which ~ω` is the energy of
POP given by ~ω` = kBθD; θD is the Debye temperature
of the medium.

Epo =
me~ω`
~2

(
1
ε∞
− 1
ε

)
is the field of polar-optical scattering potential in which
ε and ε∞ are the static and high frequency permittivities
of the medium, respectively. K0(xe/2) is the zeroth order
Bessel function of the first kind.

In steady-state, the power absorbed per electron from
the pump is just equal to the power lost in its collisions
with POP. Therefore equations (7, 8) lead us to(

Te − T0

T0

)
=
e2ν

2m
(ω2

0 + ω2
c )τ

[(ω2
0 − ω2

c )2 + 4ν2ω2
0]
E0E

∗
0 , (9)

where

τ−1 =
(

2kBθD

mπ

)1/2

eEpox0K0(x0/2)
x

1/2
0 exp(x0/2)
exp(x0)− 1

·

(10)

Here we have assumed Te ≈ T0 in view of moderate heat-
ing of electrons by the pump.

The modified electron MTCF attributed to AP scat-
tering is given by [21]

ν = ν0(Te/T0)1/2, (11)

in which ν0 is the MTCF of electrons in absence of the
pump.

2.2 Dispersion relation

We differentiate equation (5) with respect to time and
employ equations (2–6) in collision dominated regime
(ν � k0 · v0, ωa). An algebraic simplification yields the
equation of electron density perturbation wave as

∂2n1

∂t2
+ ν

∂n1

∂t
+ ω2

Rn1 +
n0eβk

2
a

mε

ν2

(ν2 + ω2
c )
u =

− i(k1 + k0)n1E, (12)

where

ω2
R = ω2

R

ν2

(ν2 + ω2
c )

(13a)
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in which

ω2
R = ω2

p + k2
a

(
kBTe
m

)
with ωp =

√
n0e2

mε

being the electron plasma frequency and

E =
e

m

(
1− ω2

c

ω2
0

)−1

E0. (13b)

The electron density perturbation (n1) has two compo-
nents namely fast (n1f) and slow (n1s). The fast compo-
nent oscillates at the side-band frequencies (ω1 = ωa±ω0)
while the slow one at the acoustic frequency (ωa) and sat-
isfy the relation

n1 = n1f + n1s. (14)

Using rotating-wave approximation, we may resolve equa-
tion (12) into the fast and slow electron density perturba-
tion waves as

∂2n1f

∂t2
+ ν

∂n1f

∂t
+ ω2

Rn1f = −i(k1 + k0)n1sE (15a)

ν
∂n1s

∂t
+ ω2

Rn1s +
n0eβk

2
a

mε

ν2

(ω2
c + ν2)

u = −i(k1 + k0)n1fE.

(15b)

The above equations infer that the fast and slow compo-
nents couple to each other via the pump amplitude E0 (or
E). Thus the presence of intense pump is essential for the
onset of parametric interaction. The equation (15a) can
be simplified to yield

n1f = −i(k1 + k0)n1sE

×
[{
ω2

R − iν(ωa + ω0)− (ωa + ω0)2
}−1

+
{
ω2

R − iν(ωa − ω0)− (ωa − ω0)2
}−1

]
. (16)

After some algebraic simplification, the above equation
reduces to

n1f =
2i(k1 + k0)n1sE

(ω2
0 + ν2)

, (17)

here we have assumed that ωa � ω0 and ωR ∼ ν.
The displacement of the lattice points due to propaga-

tion of the AW may be obtained from equation (2) as

u =
(βe/ρε)(

ω2
a −

c

ρ
k2

a −
β2k2

a

ρε

)n1s. (18)

Using equations (17, 18) in equation (15b), one may obtain
the dispersion relation for the AW in the medium as(
ω2

a −
c

ρ
k2

a −
β2k2

a

ρε

)[
ω2

R − iνωa −
2(k1 + k0)2E

2

(ω2
0 + ν2)

]
=

− ω2
R

βe

ρε
n1s. (19)

This equation represents the general dispersion relation
of the AW in PES in the hydrodynamic limit ka` � 1.
Equation (19) also indicates that the piezoelectricity of
the medium acts as a coupling parameter between the
generated AW and the electrostatic SBW in the medium.

2.3 Convective amplification of the AW and critical
pump amplitude Ecr

In order to explore the possibility of convective amplifica-
tion of the AW, we rewrite equation (19) as(

ω2
a −

c

ρ
k2

a −A
)

+ ω2
R

A

G

(
1 + iν

ωa

G

)
= 0, (20)

where A = κ2k2
av

2
a in which κ = β/

√
cε and va =

√
c/ρ

being the AW velocity and

G = ω2
R −

2(k1 + k0)2E
2

(ω2
0 + ν2)

· (21)

By assuming |k0| ≈ |k1| ≈ |ka| = k, ωa = ω, and G ∼ ω2
R,

equation (20) simplifies to

B1k
4 −B2k

2 +B3 = 0, (22)

where

B1 =
8κ2v2

aE
2

(ω2
0 + ν2)

, (23a)

B2 = (ω2
R − iνωκ2)v2

a , (23b)

B3 = ω2ω2
R. (23c)

Obviously equation (22) possesses four roots which can
predict amplification/attenuation of the generated AWs.
In order to solve equation (22), we proceed by treating it
as a quadratic in k2 whose roots are given by

k2
1 =
−iνω(ω2

0 + ν2)

16E
2 +

[
ω2

R(ω2
0 + ν2)

8κ2E
2 − ω2

v2
a

]
, (24a)

k2
2 =
−iνω(ω2

0 + ν2)

16E
2 +

ω2

v2
a

· (24b)

As evident from equation (24a) that the real part of k2
1

vanishes when
ω2

R(ω2
0 + ν2)

8κ2E
2 =

ω2

v2
a

· (25)

If we address the pump amplitude satisfying the above
condition as critical pump amplitude Ecr then

Ecr =
m

e

ωRvs

2κω

(
1− ω2

c

ω2
0

)√
ω2

0 + ν2

2

=
mvs

2
√

2eκ
ωRν

ω

(
1− ω2

c

ω2
0

)√
ω2

0 + ν2

ω2
c + ν2

· (26)

It may be inferred from this equation that with in-
creasing ωc, Ecr increases parabolically due to the factor
(1−ω2

c/ω
2
0) but the shape gets slightly modified due to the

presence of the term (ω2
c + ν2)−0.5 in equation (26). Now

we seek solutions of equations (24) in different regions of
the pump amplitude E0.
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2.3.1 At low pump amplitude [E0 < Ecr]

In this region

ω2
R(ω2

0 + ν2)

8κ2E
2 >

ω2

v2
a

using De-Moivre theorem, one gets the roots of equa-
tions (24) as

k1f,b = ±
[
ωR

2κE

√
ω2

0 + ν2

2
− iνωκ

8ωRE

√
ω2

0 + ν2

2

]
, (27a)

k2f,b = ±
[

1
4E

√
νω(ω2

0 + ν2)
2

− i
4E

√
νω(ω2

0 + ν2)
2

]
.

(27b)

The subscript f and b to the quantities concerned stand for
forward and backward acoustic modes corresponding to +
and − sign, respectively. Clearly, the roots (Eqs. (27)) are
complex whose real and imaginary parts help in study of
propagation characteristics and amplification/attenuation
of the AW in the medium, respectively. Clearly, there
are four acoustic modes corresponding to these four roots
(Eqs. (27)); two propagating in forward direction and re-
maining two in the backward direction. It may also be
inferred that the forward modes amplify (due ki < 0) and
the back scattered modes attenuate (due ki > 0) while
propagating through the medium.

The phase velocities of these modes are obtained as

vp1f,b =
∣∣∣∣ ω

(k1f,b)r

∣∣∣∣ = 2κE
ω

ωR

√
2

(ω2
0 + ν2)

, (28a)

vp2f,b =
∣∣∣∣ ω

(k2f,b)r

∣∣∣∣ = 4E

√
2ω

ν(ω2
0 + ν2)

· (28b)

where the subscript r to the quantities represent their real
parts.

2.3.2 At critical pump amplitude [E0 = Ecr]

At critical pump amplitude, the roots of equa-
tion (23a) are

k1f,b = ±
[

1
4E

√
νω(ω2

0 + ν2)
2

− i
4E

√
νω(ω2

0 + ν2)
2

]
,

(29)

and the phase velocities of the corresponding acoustic
modes are

vp1f,b =
∣∣∣∣ ω

(k1f,b)r

∣∣∣∣ = 4E

√
2ω

ν(ω2
0 + ν2)

· (30)

From equation (24b), one may readily conclude that there
is no critical pump amplitude for acoustic modes corre-
sponding to k2

2. A careful observation of equations (27–30)
reveals that at E0 = Ecr, a singularity occurs for gains and
phase velocities of the AWs corresponding to k2

1 and k2
2.

2.3.3 Just above critical pump amplitude [E0 > Ecr]

In this region

ω2
R(ω2

0 + ν2)

8κ2E
2 >

ω2

v2
a

the roots of equations (23) are obtained as

k1f,b = ±
[
νva(ω2

0 + ν2)

32E
2 − i

√
1
2

(
ω2

v2
a

− ω2
R(ω2

0 + ν2)

8κ2E
2

)]
,

(31a)

k2f,b = ±
[
ω

va
− i

νva(ω2
0 + ν2)

32E
2

]
, (31b)

and the corresponding phase velocities of these acoustic
modes are

vp1f,b =
∣∣∣∣ ω

(k1f,b)r

∣∣∣∣ =
32ω

ν(ω2
0 + ν2)va

E
2
, (32a)

vp2f,b =
∣∣∣∣ ω

(k2f,b)r

∣∣∣∣ = va. (32b)

3 Results and discussions

To have numerical appreciation of the results obtained in
the above analysis, an n-InSb crystal is assumed to be irra-
diated by 10.6 µm CO2 pulsed laser. The other parameters
used in the numerical estimation are; m = 0.014m0, m0 is
the free electron mass, n0 = 1022 m−3, εL = 17.54, ε∞ =
15.7, ρ = 5.8× 103 kg m−3, β = 0.054 C m−2, T0 = 77 K,
θD = 278 K, ω0 = 1.78 × 1014 s−1, ν0 = 3.5 × 1011 s−1,
ω = 4× 109 s−1, k = 5× 106 m−1.

Figure 1 depicts the variations of electron to lattice
temperature ratio Te/T0 and electron MTCF ν with re-
spect to the pump amplitude E0. Both the parameters
are almost constant up to E0 ≈ 106 V m−1, but increase
sharply afterwards. The shapes of both the curves are
parabola which agrees with equations (9, 11), respectively.
This infers that at low pump intensities, one may safely ig-
nore heating of the carriers by the pump and may assume
ν = ν0. However, this is not the case while dealing with
high intensity lasers and hence the heating of the carriers
by the pump must be given due considerations.

As clear from the analysis in the preceding section
that there are four convectively unstable acoustic modes;
two forward modes which amplify and the two backward
modes that attenuate. Figures 2 and 3 display the varia-
tions of gains (|k1fi|, |k2fi|) and phase velocities (vp1f , vp2f)
of the amplifying acoustic modes with respect to the pump
amplitude E0, when ωc = 0.5ω0. The gains |k1fi| and |k2fi|
decrease with increasing E0 and meet at certain critical
value of E0 (≈ 9 × 106 V m−1 in the present case). This
singularity, corresponding to critical pump amplitude, is
expected in Section 2.3.2. In the region E0 > Ecr, |k1fi|
starts increasing gradually but soon abruptly as shown
in Figure 2. The other gain |k2fi| decreases for all values
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Fig. 1. Variation of electron to lattice temperature ratio Te/T0

and momentum transfer collision frequency ν with pump am-
plitude E0 when ωc = 0.5ω0 and n0 = 1022 m−3.

of E0. The shape of the gain-curves can be conveniently
explained from their expressions (Eqs. (27a, 29, 31a) for
|k1fi| and Eqs. (27b, 31b) for |k2fi|) in terms of variations
of ωR, E and ν in different regions of E0. In the low pump
intensity region (up to E0 ≈ 3 × 106 V m−1) the heat-
ing of carriers is negligible so ν and ωR remain almost
constant but E increases and consequently |k1fi| and |k2fi|
decrease. As we approach Ecr, ν starts increasing con-
siderably and at E0 = Ecr, the variations of E and ν
nullify each other which results in a plateau as shown in
Figure 2. In the region E0 > Ecr, |k1fi| shoots up due to
the factor 1/E

2

0 (Eq. (31a)) while |k2fi| decreases due to
the factor ν/E

2

0 (Eq. (31b)). The phase velocity vp1f shows
some peculiar response to the variation of E0 in the sense
that although it increases for all allowed values of E0, the
slope of the curve varies continuously. Initially, the slope
of the curve decreases until Ecr is reached. Beyond this,
the slope starts increasing and finally becomes almost up-
wards as shown in Figure 3. The phase velocity vp2f of
the other acoustic mode remains practically constant for
all values of the pump amplitude. Again a singularity oc-
curs at E0 = Ecr. It is worthwhile to mention here that
Figure 2 might mislead to conclude that the gain |k1fi|
may be increased to any arbitrarily large value by simply
increasing E0 beyond Ecr. Unfortunately this never hap-
pens because at this pump amplitude the phase velocity
v1pf also increases to such an extent that relativistic effects

Fig. 2. Variation of gains (|k1fi|, |k2fi|) with pump amplitude
E0 when ωc = 0.5ω0 and n0 = 1022 m−3.

Fig. 3. Variation of phase velocities (vp1f , vp2f) with pump
amplitude E0 when ωc = 0.5ω0 and n0 = 1022 m−3.
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Fig. 4. Variation of gains (|k1fi|, |k2fi|) with cyclotron fre-
quency ωc when E0 = 6× 106 V m−1 and n0 = 1022 m−3.

come into picture and warrants modification in present
non-relativistic analysis, accordingly. Apart from this, the
approximation Te ≈ T0 in the analysis also forbids E0 to
attain higher values.

In Figures 4 and 5, we have plotted the gains (|k1fi|,
|k2fi|) and phase velocities (vp1f , vp2f) of the forward
acoustic modes against the variations of static magnetic
field Bs (via ωc) at constant pump amplitude E0 (=
6 × 106 V m−1). The gain |k1fi| increases with decreas-
ing slope while the other gain |k2fi| decreases with in-
creasing slope until they meet at ωc ≈ 11 × 1013 s−1.
Obviously at this value of ωc, E0 (= 6 × 106 V m−1)
becomes the critical pump amplitude Ecr and thus re-
sults in a singularity. Beyond this point, |k1fi| increases
rapidly with increasing slope. The other gain |k2fi| main-
tains its decreasing trend. The variations of |k1fi| and |k2fi|
could be easily understood from the imaginary parts of
the equations (27a, 27b). The phase velocities vp1f and
vp2f (Eqs. (28a, 28b)) follow almost the same variation
patterns as those of their respective gains. Here we again
encounter the same situation as in Figures 2 and 3; one
may expect arbitrarily large gain |k1fi| by slightly increas-
ing the ωc beyond the critical point (E0 = 6×106 V m−1),
but this possibility is again ruled out because at large
magnetic field, the cyclotron resonance effects start play-
ing vital role and thus the present analysis starts losing
its validity.

Fig. 5. Variation of phase velocities (vp1f , vp2f) with cyclotron
frequency ωc when E0 = 6× 106 V m−1 and n0 = 1022 m−3.

In summary, we have analytically investigated the pos-
sibility of excitation and convective amplification of AWs
as a result of PI of intense pump with the magnetoplasma
in PES. This phenomenon in the medium generates two
amplifying and two attenuating acoustic modes. The gains
of the amplifying modes decrease up to the critical point
Ecr beyond which one of the mode found shooting up
abruptly while the other maintains the decreasing trend.
The presence of strong magnetic field (Bs) is found to shift
the critical point towards lower pump amplitude. How-
ever, the occurrence of magnetic resonance effects restricts
Bs to increase beyond a limit. A plateau of gains, observed
over a considerable range of pump amplitude around Ecr,
can be potentially exploited for the simultaneous amplifi-
cation of the acoustic modes. This region may also enable
us to fabricate parametric oscillators and amplifiers with
stable gains by suitably choosing critical pump amplitude
along with the aid of an appropriate transverse magnetic
field. The above discussed amplification/attenuation char-
acteristics of the AWs may be attributed to heating of the
carriers by the pump and the resultant temperature de-
pendence of MTCF of the electrons.
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